Urine drug screening: using GC-MS/MS to augment LC-MS/MS screens

Jennifer M. Colby, Ann Marie Gordon, Alan H. B. Wu, Kara L. Lynch
San Francisco General Hospital/University of California San Francisco, San Francisco, CA 94110

Introduction
Clinical toxicology services, which encompass the detection of pharmaceuticals and drugs of abuse in biological samples, are routinely offered by hospital laboratories and can play an important role in patient management. In addition to immunoassay screening for routine drugs of abuse, our laboratory uses a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to screen patient urine samples for a large number of clinically relevant compounds. Immunoassays are not available for many of the compounds in our method, which makes it a challenge to verify results by two techniques. Here we report the development and validation of a gas chromatography tandem mass spectrometry (GC-MS/MS) method for comprehensive urine drug screening with method performance evaluated in part by concordance with our LC-MS/MS method.

Sample preparation
GC-MS/MS samples were prepared by solid phase extraction (SPE) of 0.5 mL urine using UCT Clean Screen extraction columns. Acid/neutral drugs were eluted with hexane/ethyl acetate and basic drugs were eluted with methylene chloride/isopropanol.

GC-MS/MS samples were prepared by a 1:5 dilution of urine into the starting condition of the chromatographic run.

GC-MS/MS method

- **GC column:** 30m BR-5ms column, 0.25 mm ID and 0.25 μm df (Bruker).
- **Instrumentation:** Bruker 436 GC and Scion TQ mass spectrometer with Bruker CP-8400 autosampler. Siltek-deactivated gooseneck inlet liner (Restek). Source held at 240°C and transfer line held at 280°C. Helium carrier gas flowed at 1 mL/min.
- **Oven Program:** Start 80°C hold for 1 minute 15°C/min 295°C hold for 5 minutes
- **Injection:** Injection port held at 280°C. 1 μL injections were conducted in split-splitless mode with pressure pulse (40 psi for 0.4 minutes, total 0.6 minute injection).
- **Data collection:** Data was collected using MSWS version 8.1 (Bruker) in SRM mode, monitoring 2 transitions of retention time and the presence and ratio of the two compound specific SRMs.
- **Data Analysis:** Data was analyzed using MS DataReview (Bruker). Positivity was determined on the basis of retention time and the presence and ratio of the two compound specific SRMs.

Scheduled SRM method

The lower limit of detection (LLOD) was defined as the lowest concentration of analyte tested where the signal:noise ratio was ≥ 20.

Recovery

Recovery was measured as the ratio of peak area of drug recovered from samples spiked pre-SPE extraction compared to drug recovered from samples spiked post SPE-extraction. Data are shown for a subset of drugs. Average recovery was 70%.

Matrix effects

Matrix effects were measured as the ratio of peak area between drug spiked into urine post-SPE extraction and drug spiked into water post-SPE extraction. Data are shown for a subset of drugs.

Method performance

Method performance was evaluated in part using 30 patient urine comparisons. Our LC-MS/MS method was used as the gold standard. Exclusion of drugs not in the GC-MS/MS method from the analysis substantially improved the sensitivity and NPV.

Conclusions

We present a method that could be used as an orthogonal technique to verify LC-MS/MS urine drug screening results and is compatible with a general unknown screening approach. The sensitivity of our GC-MS/MS method could be improved by the addition of a hydrolysis step prior to the extraction and/or derivitization to improve peak shape and lower the limits of detection for large/polar analytes. Use of both LC and GC technologies in our laboratory allows us to screen patient urine samples for a wider variety of compounds with a greater assurance of accuracy.

Acknowledgements

The authors thank Bei-Tzu Wang for her help in developing some of the compound dependent parameters. We also thank Bruker Daltonics for supplying the funding for JMC’s postdoctoral fellowship.