An HPLC-MS/MS Method for the Quantification of Serum Methylmalonic Acid (MMA).

Livie C1, Brown H2, Foley D2 & Calton L2.
1: Clinical Biochemistry, Maclean Building, Glasgow Royal Infirmary, NHS, UK. 2: Scientific Operations, Wilmslow, Waters, UK.

Background

- Vitamin B12 deficiency has an estimated prevalence of 10.8% in the USA, with 2 – 3% of >60 year olds thought to be deficient1,2.
- Deficiency of B12 can result in haematological dysfunction and potentially irreversible neurological impairment.
- Serum B12 is the most common clinically used marker for deficiency but has suboptimal sensitivity2,3.
- B12 depletion results in accumulation of methylmalonic acid (MMA) and homocysteine.

Aim: Validate a method to quantify serum MMA by LC-MS/MS.

Methods

- Samples spiked with internal standard were passed through a Waters OSTR™ protein precipitation and phospholipid removal plate.
- Chromatographic separation was optimised using the ACQUITY UPLC T3 100 x 2.1 mm column.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Flow rate (mL/min)</th>
<th>%A (0.3% Formic (aq))</th>
<th>%B (0.1% Formic (MeOH))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.2</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>3.0</td>
<td>0.2</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>3.7</td>
<td>0.2</td>
<td>98</td>
<td>2</td>
</tr>
</tbody>
</table>

- Mass detection was performed with the Xevo™ TQ-S operating in negative electrospray ionisation (ESI-) mode.
- Phospholipids were detected in positive ESI mode with daughter scans (parent m/z 350 to 800 daughter m/z 184).
- Matrix effects were determined by calculating the Matrix Factor percentage in six individual serum samples.

Table 1: Inert method validation.

Matrix Factor = Response in the presence of matrix / Response in the absence of matrix.

Results

Chromatography

- Figure 2: Chromatographic separation of isobaric MMA and succinic acid - <6 minutes injection to injection.
- Figure 3: Phospholipid daughter scan of serum sample (red trace) with (A) protein precipitation or (B) with protein precipitation with OSTRO™ demonstrating the removal of phospholipid interferences from the serum sample.

Sample Preparation

- Interference testing demonstrated lithium heparin plasma samples may also be used with this method.
- Mean Matrix Factor = 84% (range 70-91%) demonstrating 16% ion suppression.

Matrix Effects

- Interference testing demonstrated lithium heparin plasma samples may also be used with this method.
- Mean Matrix Factor = 84% (range 70-91%) demonstrating 16% ion suppression.

Calibration

- Linearly assess the MMA spiked serum covering a range of 0.09 – 1.5 µmol/L, n = 4 per concentration.

Calibration curve

- Figure 5: Calibration curve. 1/1 X weight to account for heteroscedasticity seen in linearity experiments. Range = 0.09 – 1.4 µmol/L, n = 4.

Imprecision and recovery of lower concentration calibrators of MMA spiked PBS, n = 6.

<table>
<thead>
<tr>
<th>Type</th>
<th>Specimen</th>
<th>Concentration (µmol/L)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low cal 50%</td>
<td>Spiked PBS</td>
<td>≤4%</td>
<td>2.3</td>
</tr>
<tr>
<td>Low cal 50%</td>
<td>Inject after 24 hrs</td>
<td>≤4%</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Ninhydrin method

- Figure 6: Method comparison with a reverse-phase MS/MS method (n = 53). Denoting regression analysis revealed -20% constant bias, p=0.005.

Table 2: Method validation criteria and results.

Conclusion

- Partial validation of a method to quantify serum MMA by LC-MS/MS.
 - Successfully covers recognised decision limits (<0.27 µmol/L for repletion, >0.37 µmol/L for deficiency)2.
- Chromatographic separation of MMA and succinic acid.
 - Uses reverse-phase methodology for easy implementation in clinical laboratories.

Future work

- Complete validation experiments.
 - Expand linearity assessment >1.4 µmol/L and perform accuracy experiments with certified reference material (CRM) to determine cause of method comparison bias.
- Develop method to measure homocysteine in tandem.
 - Use of multiple markers are known to improve clinical performance2.

Acknowledgements

The authors would like to thank Dr. Anne Schmedes, Department of Clinical Biochemistry, Ullstein Hospital, Vejle, Denmark, for the provision of anonymised samples for the method comparison study.