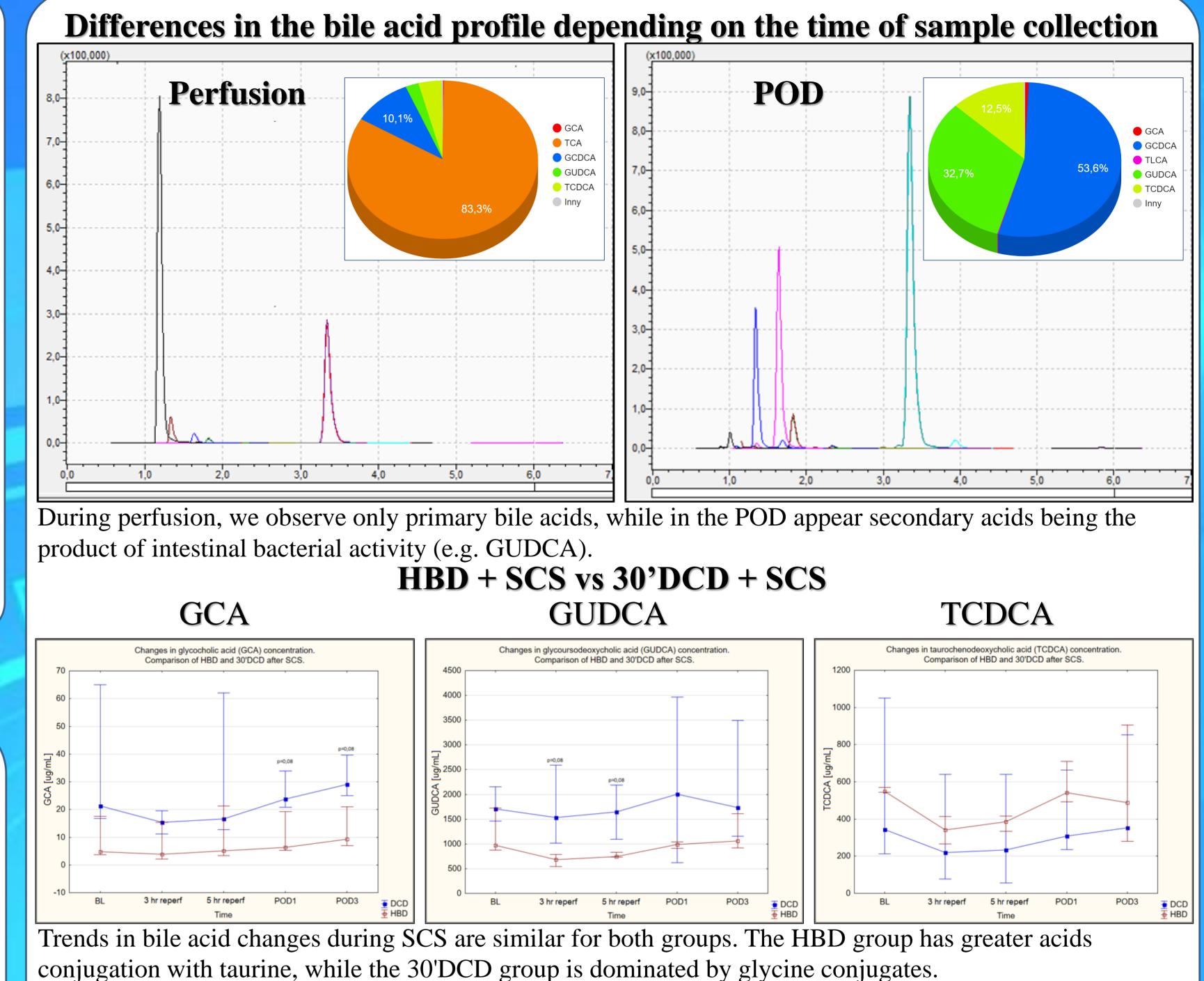
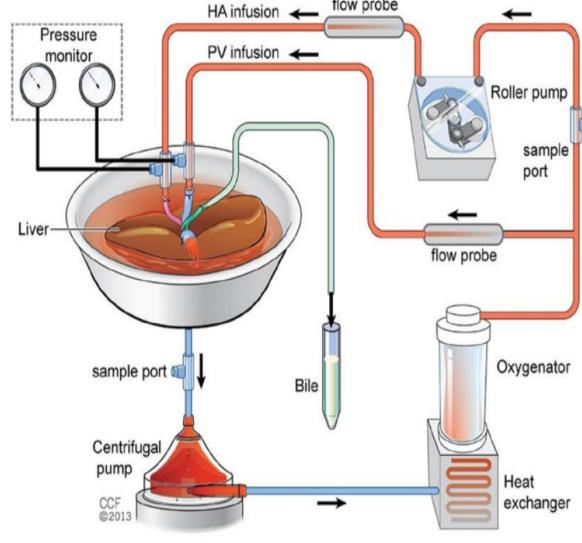

NICOLAUS COPERNICUS **UNIVERSITY** IN TORUŃ Ludwik Rydygier

Analysis of Changes in Bile Acids Concentration in Bile in Response to the Degree of Liver Ischemia and the Method of Organ Preservation


¹Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland

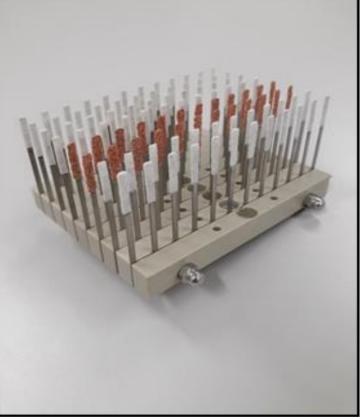
²Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Canada ³Department of Medicine, Toronto General Hospital, Toronto, Canada

Introduction


Liver transplant surgery is currently the standard of treatment in patients with end-stage organ failure. Nowadays, the dominant method of organ preservation used by most transplantation centers is static cold storage better method (SCS). However, of preservation a organ is sought, which would allow extending the storage time of the graft while maintaining its proper quality The proposed method is normothermic ex-vivo liver perfusion (NEVLP), based on maintaining normal metabolic activity, which gives the opportunity of better assessment of liver viability before implantation. One of the possibilities is to assess the production of bile by the liver perfused in these conditions. It is considered that the production of bile alone is not sufficient evidence for the proper functioning of the liver and directs the research to assess the composition of bile. Therefore, it is assumed that changes in the concentration of bile acids, which are the main component of bile, may correlate with changes occurring in the transplanted organ.

Results

Methods


1. Collection of bile during SCS or NEVLP [1]

The study was performed on bile samples obtained from two types of porcine model donors: heart beating donor (HBD) and donor after cardiac death (DCD). Samples were collected during SCS and NEVLP at specific time points: before organ harvest, during perfusion (for NEVLP), reperfusion and the first few days after transplantation. The DCD group was divided due to the time of organ ischemia: 30' for SCS and 30', 60', 90' for NEVLP (n=3 in each group).

2. Sample preparation

Sample preparation was performed according to the thin-film solid phase microextraction (TF-SPME), using C18 sorbent as the extraction phase.

A. Extraction:

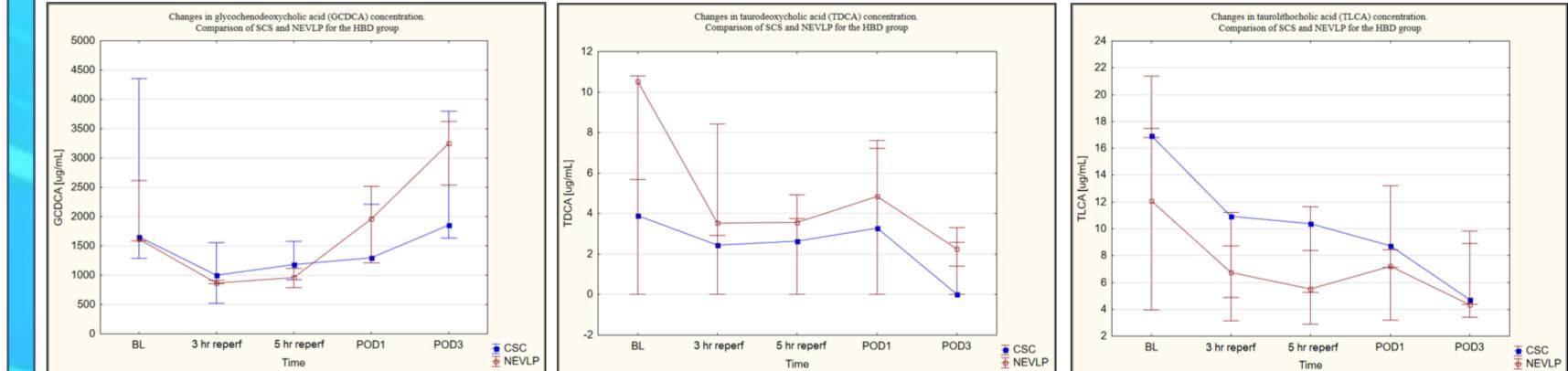
• 10 μ L bile:990 μ L PBS + 10 μ L IS • TF-SPME (5 mm C18 coating) • 60 min, 25°C, 1000 rpm agitation

B. Desorption:

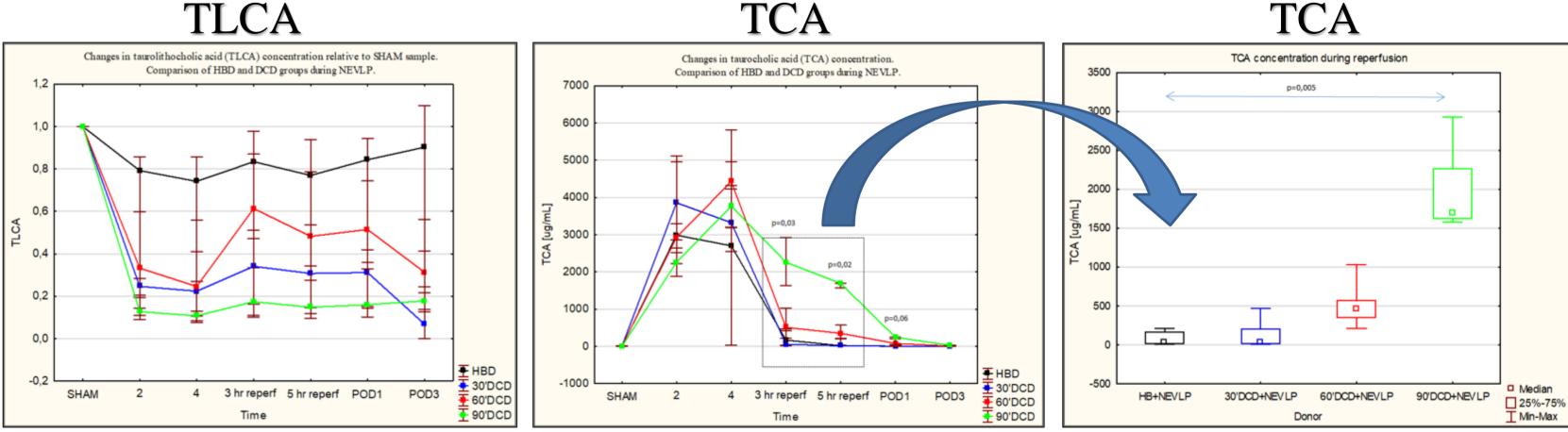
• 1 mL MeOH • 60 min, 25°C, 1000 rpm agitation

*For glycochenodeoxycholic, glycoursodeoxycholic and taurochenodeoxycholic acid, the extracts were diluted 200x.

3. LC-MS/MS analysis



Ū.				_
Analyte	Rt [min]	M [g/mol]	MRM transition (m/z)	CE
GCA	1,66	465.62	464,2→73,85	39
(Glycocholic acid)			464,2→402,15	36
			464,2→410,1	46
TCA	1,17	515.70	514,15→123,8	54
(Taurocholic acid)			514,15→106,8	55
			514,15→280,9	30
GCDCA	3,29	449.62	448,15→73,85	37
(Glycochenodeoxycholic acid)			448,15→386,4	35
			448,15→330,05	47
TLCA	4,22	483.71	482,15→123,8	51
(Taurolithocholic acid)			482,15→106,8	54


TLCA

Clinic

After transplantation, we observe an increase in glycine conjugated acids and a decrease in taurine conjugated acids in both groups. GCDCA levels increase more rapidly in the first postoperative days after NEVLP compared to SCS.

HBD + NEVLP vs 30'DCD,60'DCD,90'DCD + NEVLP

In groups with ischemia, we note a lower concentration of TLCA and its significant decrease during

$\frac{(U000000)}{(C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$			(Taurolithocholi	ic acid)		482,15→106,8		
(100000) (148,2-38,23) (100000) (150,151,151,152,20) (15,152,20) (100000) (150,151,151,152,20) (15,151,151,151,151,151,151,151,151,151,								
$\frac{10000000}{10^{-1}}$					449.62	448,2→73,85		
IDCA 2,04 499,70 498,15-105,8 (d000000) 3,85 449,62 448,15-33,85 (g1000000) 3,85 449,62 448,15-404,15 (g1000000) 470CA,188,057,735,07,02,30 448,15-404,15 445,15-404,15 (g1000000) 470CA,188,057,735,07,02,30 448,15-404,15 448,15-404,15 (g1000000) 470CA,188,057,735,07,02,30 448,15-404,15 445,10-407,15 (g1000000) 470CA,188,057,735,07,02,30 437,1-339,115 445,10-407,15 (g1000000) 470CA,188,057,735,07,02,30 437,1-339,115 437,1-339,115 (g100004,422,37,356,02,30 1437,1-339,115 1437,1-339,115 1437,1-339,115 (g100004,422,37,356,02,30 1437,1-343,21 1437,1-343,21 1437,1-343,21 (g100004,422,37,356,02,30 133,1-407,05 437,1-339,115 133,1-407,05 (g100004,422,37,356,02,30 1337,1-343,21 1437,1-343,21 1437,1-343,21 (g100004,422,37,356,02,30 1437,1-343,21 1437,1-343,15 1437,1-343,15 (g100004,422,37,356,02,43,00 137,1-349,15 1437,1-343,15 1437,1-343,1	and the second se		(Glycoursodeox)	.ycolic acid)				
(1000000) (10000000) (10000000) (1000000000000000000000000000000000000	No. Contraction of the second s					, ,		
000000000000000000000000000000000000					499.70			
CX10000000 CX10000000 CX100000000 CX100000000 CX100000000 CX100000000 CX1000000000 CX1000000000000000000000000000000000000			(Tauroursodeoxy	ycholic acid)				
(Glycodeoxycholic acid) (448,15-400,15 4								
0100000000000000000000000000000000000				-	449.62	· ·		
CA (ball \$14,1512,36),1CE \$40 3 GCA46 42,073,36), 1CE \$30 3 GCA464 42,073,36), 1CE \$30 3 GCA64 42,073,10-393,30, 1CE \$30 3 GCA64 42,073,10-393,10,10-38 433,11-343,11-340,105 443,11-343,11-343,12 443,11-343,11-343,12 442,11-333,1-344,75 443,11-343,12 442,11-333,1-344,75 443,11-343,12 442,11-333,1-344,75 443,11-343,10-343,12 442,11-333,1-344,75 443,11-343,10-344,85 443,11-343,10-344,85 443,11-343,10-344,85 443,11-343,10-344,85 443,11-343,10-344,85 443,11-343,10-344,85 443,11-343,10-344,85 443,11-344,15 410,11-344,85 443,11-344,15 410,11-344,85 443,11-344,15 410,11-344,85 443,11-344,15 410,11-34			(Glycodeoxycho	olic acid)				
33GCA44842b7386/0E 380 453,10-353,35 37GCA44842b7386/0E 390 453,10-353,35 67CA45,10+07L5/CE 530 453,10-353,35 67CA45,10+07L5/CE 20 453,10-353,35 87CCA4484517386/0E 30 437,1-341,95 10GCA492,107386/0E 30 437,1-343,2 10GCA492,107386/0E 30 437,1-343,2 10GCA492,107386/0E 30 437,1-343,15 12GCCA484517386/0E 30 437,1-343,15 12GCCA484517386/0E 30 437,1-343,15 12GCCA48510-353,15 437,1-343,15 12GCCA48510-350,16 437,1-343,15 12GCCA48510-350,16 437,1-343,15 12GCCA487,10-381,15 437,1-343,15 12GCCA487,10-381,15 437,1-343,15 12GCCA437,10-381,15 438,1-106,8 12GCCA437,10-381,15 438,1-106,8 12GCCA437,10-381,15								
3 3GCA18 442 07385/0 CE 330 3 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1:TCA-Na 514,15≥123,80(-) CE: 54, 2:0UDCA 448,20=72,85(-) CE: 26,0			2,93	408.57			
 4 TCCCA.418.48 (19/12) 75(- (£ 54.0) 5 STCCA.418.489 (19/12) 75(- (£ 7.0) 5 STCCA.453 (19.499 (5)- (2 5.20) 5 STCCA.453 (19.499 (5)- (2 5.20) 5 STCCA.453 (19.499 (5)- (2 5.20) 5 STCCA.453 (19.491 (5)- (2 5.20) 5 STCC	3:GCA-Na 464 20>73 85(-) CE: 39.0		(Cholic acid)					
 Chenodeoxycholic acid) Chenodeoxycholic	4:TCDCA-Na 498,10>123,75(-) CE: 1	54,0						
7CA 43 (0-01) 15(-) CE 220 437,1373,2 9 (0C0A 443,1573,85(-) CE 240 437,1373,2 10 (0C0A 443,2573,85(-) CE 240 437,1314,15 10 (0C0A 443,2573,85(-) CE 240 437,1314,25 10 (0C0A 443,2573,85(-) CE 240 437,1314,25 11 (0C0A 443,2573,85(-) CE 240 437,1314,25 12 (CCA 437,10-391,20(-) CE 250 437,1314,25 14 (CO0A 437,10-391,15(-) CE 240 433,1417,37 12 (CCA 437,10-391,15(-) CE 240 433,1417,37 14 (CO0A 437,10-391,15(-) CE 240 433,1417,37 15 (CCA 437,10-391,15(-) CE 240 433,1417,37 16 (TCCA 437,10-391,15(-) CE 240 433,1417,37 17 (CDCA (1arrochenodeoxycholic acid) 1,77 499.70 14 (CCA 437,10-391,15(-) CE 240 433,1412,375 14 (CCA 437,10-391,10,10,10,10,10,10,10,10,10,10,10,10,10		A.O		-	392.57			
BUDCA 47.10-381-35.0 (E: 24.0 0.031-35.0 (E: 24.0 9 GCDCA 448.15-138.0 (C: 25.0 437.1-345.15 10 500-448.15-138.0 (C: 25.0 437.1-345.15 12 TCA.Ms 482.15-123.00 (C: 25.0 437.1-343.2 14 CDCA 47.10-381.26 (C: 25.0 437.1-345.15 15 CDCA 47.10-381.26 (C: 25.0 437.1-345.15 16 CDCA 47.10-381.26 (C: 25.0 437.1-345.15 17 CDCA 47.10-381.26 (C: 25.0 437.1-345.15 18 CDCA 47.10-381.26 (C: 25.0 437.1-345.15 19 CDCA 47.10-381.26 (C: 25.0 437.1-345.15 10 CDCA 47.10-381.26 (C: 25.0 437.1-380.15	6:HCA 453,10>407,05(-) CE: 23,0		(Chenodeoxycho	olicacid)				
 CDCA 443 (25) 7355 (CE 7.2) CDCA 437 (10-391,21) (CE 7.5) CDCA 437 (10-391,15) (CE 7.2) CDCA 437 (10-391,15) (CE					202.55			
 12TICA-lls 482 15 123 001 (25 51.0) 13 CICA 437 (10-331 15-) (25 24.0) HCA (Hyocholic acid) HCA (Hyocho	 9:GCDCA 448,15>73,85(-) CE: 37,0 			-	392.57	· ·		
 12TCA-Ma 42(15/12300-CE 5:0) 13COCA 437(10-391):5(-) CE 5:0) 14COCA 437(10-391):5(-) CE 2:0) 15COCA (Triple Quadrupole Mass Spectrometer (Shimadzu) 14COCA 437(10-391):5(-) CE 2:0) 14COCA 437(10-391):5(-) CE 2:0)<!--</td--><td>10:GDC-d4 452,25>73,55(-) CE: 42,</td><td>2 <u>1</u>2 2 2</td><td>(Deoxycholic ac</td><td>(1d)</td><td> </td><td></td>	10:GDC-d4 452,25>73,55(-) CE: 42,	2 <u>1</u> 2 2 2	(Deoxycholic ac	(1d)				
1300A 437 10-391 20 (CE 25.0 400.07) 400.07) 400.07) 405.1389.15 14CDCA 437 10-391 15 (CE 24.0 1 1 1 453.1389.15 14CDCA 437 10-391 15 (CE 24.0 1 1 1 499.1 - 100.5 14CDCA 437 10-391 15 (CE 24.0 1 1 1 499.1 - 100.5 14CDCA 437 10-391 15 (CE 24.0 1 1 1 499.1 - 100.5 14CDCA 437 10-391 15 (CE 24.0 1 1 1 499.1 - 100.5 14CDCA 437 10-391 15 (CE 24.0 1 1 1 499.1 - 100.5 14CDCA 437 10-391 15 (CE 24.0 1 1 1 499.1 - 100.5 12CDCA (137 10-391 15 (CE 24.0) 1 1 1 499.1 - 100.5 12CDCA (137 10-391 15 (CE 24.0) 1 1 1 1 1 12CDCA (137 10-391 15 (CE 24.0) 1	12'TL CA-Na 482 15>123 80(-) CF-5	10	IICA	2.20	409.57			
$\frac{14000CA 437,10-391,15C) CE: 24,0}{100000000000000000000000000000000000$	13:DCA 437,10>391,20(-) CE: 25,0		n		408.57	· ·		
TCDCA (Taurochenodeoxycholic acid) 1,77 499.70 498,1 \rightarrow 123,75 498,1 \rightarrow 106,8 498,1 \rightarrow 106,8 498,1 \rightarrow 106,8 498,1 \rightarrow 106,8 498,1 \rightarrow 106,8 498,1 \rightarrow 106,8 498,1 \rightarrow 100,5 UDCA (Ursodeoxycholic acid) 3,13 392.57 437,1 \rightarrow 391,35 437,1 \rightarrow 44,8 • LCMS-8060 Triple Quadrupole Mass Spectrometer (Shimadzu) • ESI source in the negative MRM mode: • Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A • Column: ACQUITY UPLC BEH C18,	14:CDCA 437,10>391,15(-) CE: 24,0		(Hydenonic acid)	.)				
 (Taurochenodeoxycholic acid) (Taurochenodeoxyc			TCDCA	1.77	100 70			
 UDCA (Ursodeoxycholic acid) UCMS-8060 Triple Quadrupole Mass Spectrometer (Shimadzu) ESI source in the negative MRM mode: Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A Column: ACQUITY UPLC BEH C18, 					499.70			
 UDCA (Ursodeoxycholic acid) 3,13 392.57 437,1-391,35 (437,1-44,8) LCMS-8060 Triple Quadrupole Mass Spectrometer (Shimadzu) ESI source in the negative MRM mode: Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A Column: ACQUITY UPLC BEH C18, 			(Tauroenenouco)	xyelione acidy				
 Ursodeoxycholicacid) LCMS-8060 Triple Quadrupole Mass Spectrometer (Shimadzu) ESI source in the negative MRM mode: Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A Column: ACQUITY UPLC BEH C18, 			UDCA	3.13	392.57			
 LCMS-8060 Triple Quadrupole Mass Spectrometer (Shimadzu) ESI source in the negative MRM mode: Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1%F A Column: ACQUITY UPLC BEH C18, 	1 1 1				552.57			
 LCMS-8060 Triple Quadrupole Mass Spectrometer (Shimadzu) ESI source in the negative MRM mode: Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A Column: ACQUITY UPLC BEH C18, 	<u> </u>		(ercedeenlyenen	ic della)		137,1 711,0		
 Spectrometer (Shimadzu) ESI source in the negative MRM mode: Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A Column: ACQUITY UPLC BEH C18, 				$[\mathbf{C} \ \mathbf{O} \ \mathbf{O} \ \mathbf{C} \ \mathbf{O} \ \mathbf{C} \ \mathbf{C}$	Jucdan			
 Spectrometer (Shimadzu) ESI source in the negative MRM mode: Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A Column: ACQUITY UPLC BEH C18, 				is-ouou Imple C	Zuauru	Joie wass		
 Spectrometer (Shimadzu) ESI source in the negative MRM mode: Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A Column: ACQUITY UPLC BEH C18, 	4			Spectrometer (Shimadzu)				
 ESI source in the negative MRM mode: Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A Column: ACQUITY UPLC BEH C18, 			Speci					
 Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1% F A Column: ACQUITY UPLC BEH C18, 	1		· · · · ·					
 Mobile phase – A: H2O+ 0,1% FA; B: ACN+ 0,1%F A Column: ACQUITY UPLC BEH C18, 	9		• ESI s					
B: ACN+ 0,1%F A • Column: ACQUITY UPLC BEH C18,								
B: ACN+ 0,1%F A • Column: ACQUITY UPLC BEH C18,	1 1 A 1	1 AAA A	• Mohi	-				
• Column: ACQUITY UPLC BEH C18,			11001					
• Column: ACQUITY UPLC BEH C18,			$\mathbf{R} \cdot \mathbf{A}$	$\mathbf{R} \cdot \mathbf{\Delta} \mathbf{C} \mathbf{N} + 0.1\% \mathbf{F} \mathbf{\Delta}$				
		JAS LIL	\mathbf{D}	D. ACIN \pm 0,1701 A				
			Colu	• Column ACOUITV LIDI C DELL C10				
130Å, 1.7 μm, 2.1 mm X 50 mm	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·		\blacksquare • Column: ACQUITY UPLC BEH C18,				
130A, 1./ μm, 2.1 mm X 30 mm	0,0 1,0 2,0	3,0 4,0 5,0		17.01	V FC			
, 1 /			130A	Λ, Ι./ μm, Ζ.Ι m	m x 30) mm		

perfusion. The high concentration of taurocholic acid is characteristic for the perfusion period and is still 482,15→80,05 55 448,2→73,85 449.62 present in the reperfusion of the 90'DCD group. 448,2→386,25 36 40 448,2→384,10 499.70 498,15→123,8 53 *The results are presented as Median and Min-Max 498,15→106,8 498,15→80,05 55 449.62 448,15→73,85 Conclusions 448,15→404,15 448,15→402,25 408.57 453,10→407,15 22 453,10→343,2 TF-SPME is a high-throughput sample preparation method that can be effectively 453.10→353.35 392.57 437,1→391,15 24 437,1→44,95 used for profiling bile samples. 437,1→373,2 392.57 437,1→391,2 437,1→345,15

> 48 23

24

- Only trace amounts of free bile acids were found in bile. There is a change in the concentration of conjugated bile acids during transplantation.
- Changes in bile acid concentrations in bile samples may correlate with the metabolic processes occurring in the transplanted organ.
- Further research of bile composition extended to other bile acids and their metabolites may allow to find biomarkers of liver function.

This research has been made possible with the support of a grant for young researchers CM UMK. Ð SHIMADZU

COURAGE LIVES HERE

[1] A. Nassar et al., "Surgical Innovation," no. April, 2014

Excellence in Science

