

Accuracy and variability of serum bioavailable testosterone testing methods

Yusheng Zhu, Christopher Hamilton, Kimberly Robyak

Department of Pathology and Laboratory Medicine

Pennsylvania State University, Hershey, PA, USA

INTRODUCTION

 Bioavailable testosterone (BioT) includes free and albumin-bound testosterone.

Table 2. Comparison of BioT (Y_L) Calculated Using 4

RESULTS

- Total testosterone (TT) can be measured by immunoassays and LC-MS/MS, a preferred method for women and children.
- BioT can be calculated using various algorithms based on TT, SHBG, and albumin concentrations.
- It can also be measured after removal of SHBG-bound testosterone by NH₄SO₄ precipitation.
- The objective of the study was to compare BioT results generated by different in-house approaches with a reference lab method.

METHODS

- Forty nine serum samples with known BioT values (1.2 441.7 ng/dL) obtained from national reference laboratory.
- Total testosterone was measured by:
 - LC-MS/MS: LLE Sample Prep., Agilent 1260 HPLC, Agilent 6460 QQQ;
 - Electrochemiluminescence immunoassay (ECLIA): Roche cobas e 602;

Equations Based on TT (LC-MS/MS) and SHBG With Reference Lab Method (X)

Method	Correlation Equation*	Correlation Coefficient	Mean % Bias	% Bias Std Dev.	
Vermeulen (Y_{L1})	Y _{L1} =0.835 X- 3.46	0.997	-21.1	9.1	
Sodergard (Y_{L2})	Y _{L2} =1.078 X- 6.0	0.996	13.0	14.4	
Emadi-Konjin (Y _{L3})	Y _{L3} =0.430 X- 6.29	0.973	-68.5	8.0	
Morris (Y _{L4})	Y _{L4} =0.540 X- 4.02	0.969	-23.3	28.8	
*Deming Regression Analysis					

Table 3. Comparison of BioT (Y_E) Calculated Using 4 Equations Based on TT (ECLIA) and SHBG With Reference Lab Method (X)

Method	Correlation Equation*	Correlation Coefficient	Mean % Bias	% Bias Std Dev.	
Vermeulen (Y _{E1})	Y _{E1} =0.798 X- 1.58	0.994	-15.8	31.5	
Sodergard (Y _{E2})	Y _{E2} =1.034 X- 5.87	0.992	19.4	36.4	
Emadi-Konjin (Y _{E3})	Y _{E3} =0.405 X- 3.65	0.972	-66.2	13.0	
Morris (Y _{E4})	Y _{E4} =0.518 X- 7.59	0.966	-23.6	34.6	
*Deming Regression Analysis					

- Radioimmunoassay (RIA): MP Biomedicals.
- SHBG: ECLIA (Roche cobas e 602).
- BioT (NH4SO4 PPT): 50% Ammonium Sulfate Precipitation.
- Calculated BioT based on the following equations using fixed concentration of albumin (43 g/L).
- The allowable total error was $\pm 25\%$.

Proprietary

Table 1. Equations used for BioT calculations

Reference Lab	In House #1	In House #2	In House #3	In House #4
Modified Vermeulen	Vermeulen	Sodergard	Emadi-Konjin	Morris
	BioT (mol/L) = {($k_{at} \times [albumin] \times [FT]/(1 + k_{at} \times [FT])$ } + [FT]			BioT (nmol/L) =

 NH_4SO_4 precipitation (Y_P): Y_P=0.883X-10.93 (R=0.988), mean bias=-28.9% ±12.6%.

CONCLUSION

- Compared to the reference lab BioT and based on the in-house LC-MS/MS TT:
 - The Vermeulen, Sodergard, and Morris algorithms generate values with acceptable average biases.
 - Both the Vermeulen and Sodergard algorithms have correlation coefficients >0.99.
 - The least variable methods are Vermeulen and Emadi-Konjin algorithms with a percent bias SD of
 0.1% and 8.0% respectively.

FT (mol/L) = $\{-b + \sqrt{b^2 + 4a[TT]}\}/2a$

 $a = k_{at} + k_t + (k_{at} \times k_t)([SHBG] + [albumin] - [TT])$

 $b = 1 + k_t[SHBG] + k_{at}[albumin] - (k_{at} + k_t)[TT]$

k_t (SHBG) k_{at} (Albumin)

#1: $1 \ge 10^9 \text{ L/mol}$ $3.6 \ge 10^4 \text{ L/mol}$ #2: $5.97 \ge 10^8 \text{ L/mol}$ $4.06 \ge 10^4 \text{ L/mol}$ #3: $1.4 \ge 10^9 \text{ L/mol}$ $1.3 \ge 10^4 \text{ L/mol}$

e^{(-0.266 + 0.955 x} In[TT] - 0.228 x In[SHBG]) 9.1% and 8.0%, respectively.

- Based on the in-house ECLIA:
 - The Vermeulen, Sodergard, and Morris algorithms also produce values with acceptable average biases.
 - The Vermeulen and Sodergard algorithms show correlation coefficients >0.99.
- In comparison with LC-MS/MS, BioT results calculated using ECLIA TT values demonstrate larger variability in biases compared to the reference lab BioT for all 4 algorithms.
- We select the Vermeulen algorithm and LC-MS/MS TT method for calculating BioT.