Incorporating Stable Isotope-Labeled IgG Internal Standard and Affinity Purification for Analyzing Human IgG4 and Fc-glycan Profiles by UHPLC-MS/MS

NSAC Jing-Ya Shiao (1), Yu-Ting Chang (2,3), Ming-Chu Chang (2,3), Isabel I-Lin Tsai (1,4,5,6,7,*) (1) Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, **Taipei Medical University** (2) Department of Internal Medicine, National Taiwan University Hospital (3) Department of Internal Medicine, College of Medicine, National Taiwan University (4) Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University (5) Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University (6) International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University (7) Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei Taiwan

Introduction

It is reported that IgG Fc-glycosylation is distinct between patients with autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC), which has the potential to be used to benefit differential diagnosis in clinical application. Since type I AIP is categorized as IgG4 related disease (IgG4-RD), we aimed to purify IgG4 from human serum and focused on analyzing the Fcglycosylation profiles. The purification of IgG4 can also solve the issue of isobaric Fc-glycopeptides from human IgG3 and IgG4 of Asia population.

Methods

Purification : CaptureSelect Human IgG4

□Target serum volume: 10 µL

Trypsin digestion (1)DTT (Dithiothreitol) (2)IAA (Iodoacetamide) (3)Trypsin digestion

UHPLC: Waters ACQUITY UPLC system

DMass spectrometry : Xevo TQ-XS triple quadruple mass spectrometry Column: Kinetex C18, 2.1 x 50 mm

					Compound	Precursor	Product ^a	Cone(M)	Collision
Compound	Precursor	Product ^a	Cone (V)	Collision	name	(m/z)	(m/z)	cone (v)	(V)
name	(m/z)	(m/z)		(V)	H4N5F1-lgG4	995.1	204.1	35	25
lgG4	951.5	850.4	35	34			366.1		
		1293.6			H4N4F1S1-lgG4	1024.4	204.1	35	25
H3N3F1-lgG4	805.7	204.1	35	25			366.1		
		366.1			H5N4S1-IgG4	1029.7	204.1	35	25
H3N4F1-lgG4	873.4	204.1	35	25			366.1		
		366.1			H4N5S1-lgG4	1043.4	204.1	35	25
H4N4-IgG4	878.7	204.1	35	25			366.1		
		366.1			H5N5F1-lgG4	1049.1	204.1	35	25
H3N5-lgG4	892.4	204 1	35	25			366.1		
	00211	366 1		23	H5N4F1S1-lgG4	1078.4	204.1	35	25
H4N4E1-lgG4	927 <i>/</i>	204.1	25	25			366.1		
	527.4	266 1	55	23	H4N5F1S1-lgG4	1092.1	204.1	35	25
	041.0	204.1	25	25			366.1		
H3N5F1-IgG4	941.0	204.1	30	25	H5N5S1-lgG4	1097.4	204.1	35	25
		366.1		0.5			366.1		
H4N5-IgG4	946.4	204.1	35	25	H5N4S2-IgG4	1126.8	204.1	35	25
		366.1					366.1		
H5N4F1-lgG4	981.4	204.1	35	25	H5N5F1S1-lgG4	1146.1	204.1	35	25
		366.1					366.1		

Results

H5N4F1S1-lgG4

lgG4

H4N5F1-lgG4

H5N4F1S1-lgG4

#28b

Figure 1. Optimization of affinity bead volume

Figure 2. Optimization of incubation time

Figure 3. Optimization of on-bead digestion time

Table. Part of validation results

Compound	Conco	Intra	i-day	Inter-day		
compound		Precision	Accuracy	Precision	Accuracy	
name	(μg μι -)	(RSD, %)	(%Rec)	(RSD, %)	(%Rec)	
lgG4	0.14	4.8	101.8±5.0	3.9	100.7±4.1	
	0.41	3.0	101.5±3.0	2.7	100.5±3.0	
	3.30	2.8	100.6±2.8	3.0	99.8±2.9	
	6.60	1.6	95.7±1.5	1.3	96.8±1.9	

Calibration curves (y = ax ⁻ + bx + c)								
Target	Range (μg μL ⁻¹)	а	b	Intercept	r			
lgG4	0.14~8.80	-0.0228	7.2679	0.155	0.999			

Figure 4. Clinical applications

Conclusions

IgG4 quantification and the monitoring of Fc-glycan profiles can be achieved efficiently by using UHPLC-MS/MS with MRM mode. And the developed workflow is suitable for clinical applications.

Acknowledgements

The authors acknowledge the technical support provided by TMU Core Facility. We would like to acknowledge Mr. Chun-Chih Jared Liu and Ms. Yuan-Chin Hsiung for their excellent technical support at TMU Core Facility. (MOST-108-2320-B-038 -060 -MY3)