

Assessing small intestinal bacterial overgrowth following upper-gastrointestinal surgeries

LS Hage & KV Savva, I Belluomo, PR Boshier, PA Gummett, GB Hanna, CJ Peters. St Mary's Hospital, Imperial College London

Background

- The gastro-intestinal (GI) tract contains around 1000 distinct bacterial species; roles in maintenance of **immune system** and **metabolism**¹.
- Small intestinal bacterial overgrowth (SIBO): increase of bacteria in the gut²
- Summary of SIBO-induced gut microbiota dysbiosis³:

London

5A

- Upper-GI post-operative patients commonly experience symptoms including anorexia, diarrhoea and dumping, related to SIBO⁴.
- Current diagnostic tool for SIBO: Hydrogen breath test (HBT), a non-invasive method⁶ is limited specificity
- Volatile organic compounds (**VOCs**): organic chemicals with a high vapor pressure at room temperature⁵.

Project aims

Hypothesis:	Aims:	
SIBO has an impact on the out microbiome metabolism.		Determine the prevalence of SIBO in a random population of patients following upper GI surgeries.
		Acquire data associating SIBO with the breath profile of post-operative patients.
SIBO is highly prevalent in post-operative upper-GI patients		Develop a new diagnostic tool to identify SIBO in upper GI post-operative patients.

Materials & Methods

Study population

Inclusion criteria

Previously underwent oesophago-gastric surgery at St Mary's

Hospital, >18 years old

Exclusion criteria

Not able to provide informed written consent

Suffered from active infection

Fermentation by bacteria

 $H_2 + CH_4$

+ short chain fatty acids

Fig 1. Method of sampling breath and analysis on SIFT-MS

Absorption in blood

SIFT-MS analysis						
Compound	Molecular formula	Molecular weight (g/mol)	Ionisation	lon (m/z)		
Acetone	C ₃ H ₆ O	58	H ₃ O ⁺ NO ⁺	59, 77 88		
Acetic acid	C ₂ H ₄ O ₂	60	NO ⁺	90, 108		
Butanal	C ₄ H ₈ O	72	NO ⁺	71		
Butyric acid	C ₄ H ₈ O ₂	88	NO ⁺	118		
Ethanol	C ₂ H ₆ O	46	H ₃ O ⁺	47, 83		
Heptanone	C ₇ H ₁₄ O	114	NO ⁺	144		
Nonanal	C ₉ H ₁₈ O	142	NO ⁺	141		
Octanone	C ₈ H ₁₆ O	128	NO ⁺	158		
Pentanal	C ₅ H ₁₀ O	86	NO ⁺	85		
Pentanoic acid	C ₅ H ₁₀ O ₂	102	H ₃ O ⁺	103, 121, 139		
Propenal	C ₃ H ₄ O	56	H ₃ O ⁺	57, 73, 95		

- The prevalence of SIBO in upper-GI post-operative patients was 66,15%.
- VOCs in breath samples showed:

Fig 3. Concentration of acetone (A), heptanone (B) and butanoic acid (C) in parts per billion (ppb) over time, in breath of patients that were either positive (HBT+) or negative for SIBO (HBT-). Linear mixed model applied for each compound indicated that acetone (m/z 59, 77 & 88), heptanone (m/z 114) and butanoic acid (m/z 118) were significantly different between HBT+ and HBT- patients (n=30).

Significance was considered at a p-value < 0.05.

Table 1. Targeted VOCs for breath analysis

- Selected VOCs analysed for 60 seconds
- Measurement repeated 3 times
- Mean(y) of peak values noted

• Increase of acetone and heptanone (ketones), and decrease of butanoic acid (short-chain fatty

acid, SCFA) are consequences of the disrupted carbohydrate digestion

- Abnormal bacterial fermentation of non-digestible carbohydrates
- Abnormal oxidation of FA into ketones for ketosis

• Future approach:

- ↑ sample size and confirm current results obtained

- investigate products of FA metabolism

Promising feasible and efficient method

References

Thomas, S. et al., 2017. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Res 77, 1783-1812.
Ghoshal, U.C, Ghoshal, U., 2017. Small Intestinal Bacterial Overgrowth and Other Intestinal Disorders. Gastroenterology Clinics of North America, The Gut Microbiome 46, 103-120;
DiBaise, J.K., Vanderhoof, J.A., 2006. Enteric Microbial Flora, Bacterial Overgrowth, and Short-Bowel Syndrome. Clinical Gastroenterology and Hepatology 4, 11-20.
Schölmerich, J., 2004. Postgrastrectomy syndromes—diagnosis and treatment. Best Pract Res Clin Gastroenterology 95, 982-988.
Kerlin, P., Wong, L., 1988. Breath hydrogen testing in bacterial overgrowth of the small intestine. Gastroenterology 95, 982-988.
Kumar, S., et al., 2015. Mass Spectrometric Analysis of Exhaled Breath of the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma. Ann. Surg. 262, 981-990.