Analysis of aldosterone by LC-MS/MS: a performance comparison between a conventional electrospray ionization source and a new atmospheric pressure ionization source

Elisa Danese1, Mairi Pucci1, Gian Luca Salvagno1, Francisco Ferron2, Natalia Oxana Lupasc2, Giulia Sartori3, Francesca Pizzolo3, Giuseppe Lippi1

(1) Clinical Biochemistry section, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Italy
(2) Waters S.p.a. Sesto San Giovanni, Milano, Italy
(3) Internal Medicine Section, Department of Medicine, University of Verona

Background
Aldosterone, a mineralocorticoid steroid hormone, plays a central role in regulation of blood pressure. The usual serum or plasma concentration is in the range of pg/mL, which makes the analysis rather challenging. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) offer several advantages over conventional radioimmunoassay (RIA)-based assays in terms of both higher sensitivity and better specificity.

Purpose
In this work we report early results on performance comparison between a conventional electrospray ionization (ESI) source and a new atmospheric pressure ionization source, UniSpray (US) (Waters Corp.) for LC-MS/MS analysis of aldosterone.

Methods
Sample extraction was performed on Oasis MAX µElution Plate (Waters) according to the application note of the producer. Chromatographic separation was performed on ACQUITY UPLC I-Class System, using CORTECS UPLC C18 column (Waters) followed by detection on TOQ-Micro Tandem Quadrapole Mass Spectrometer. Standard solutions of aldosterone and its labeled internal standard were purchased by Cayman Chemical. The calibration curves were prepared in surrogate matrix of stripped human serum purchased by Chromsystems (range: 15-2000 pg/mL). Sixty five serum samples were analyzed in duplicated with ESI and US sources, and results were then compared with those obtained by the RIA method currently used in the local laboratory.

Sample extraction
Sample pre-treated with zinc sulphate in methanol (50%) and phosphoric acid (0,05%) were mixed, centrifugated, loaded on the Oasis MAX µElution Plate and slowly pulled throw at low vacuum. After consecutive washes with phosphoric acid (0,05%) and ammonia (0,1%) in methanol and water, aldosterone was eluted using methanol (70%) and then water.

Results
• The limit of detection (LOD) and limit of quantification (LOQ) defined as the lowest concentration generating a signal to noise ratio (S/N) >3 and >10 were 5 and 10 pg/mL respectively for both sources. Within-run coefficients of variations were <6% over a broad range of values (4 sample pools).
• The matrix effect, evaluated as peak area of extracted post-spiked aldosterone serum samples taken as percentage of extraction solvent samples spiked to equivalent concentrations displayed a RSD of 0.5%. The recovery percentage, expressed as ratio of [(Peak Area of Pre-Spike) / (Average Peak Area of n Post-Spikes)] x 100 was 64%.
• A mean increase in signal intensity of 51.5% and a mean decrease in S/N ratio of 48% was observed for US compared to ESI. Differences in signal intensity and signal to noise ratio are highlighted.
• The LC-MS/MS assay with US and ESI sources displayed a mean negative proportional bias of -42% and -67% respectively compared to RIA (Figure 4). Data obtained in US and ESI were perfectly correlated (r=0.998).

Conclusion
For the measurement of compounds such as aldosterone, where sensitivity is critical, the present LC-MS/MS method displayed optimal analytical performance, showing advantages of using US over ESI source in term of signal intensity. Further adjustments would be needed for improving extraction protocol efficiency.

Reference