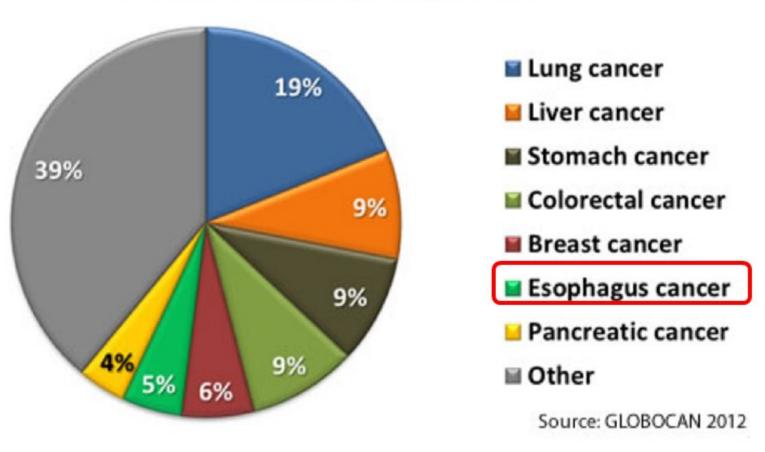
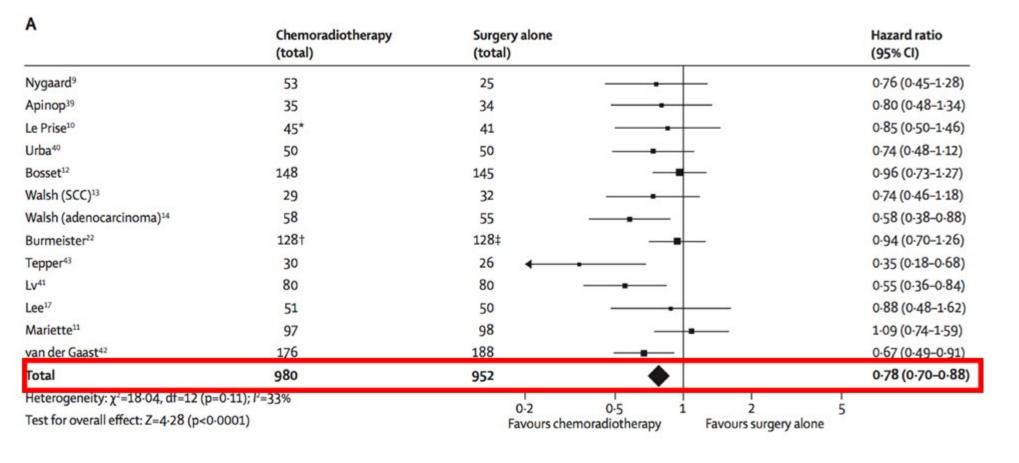
# Serum biomarkers of chemoradiosensitivity in esophageal cancer is identified by the targeted metabolomics approach.



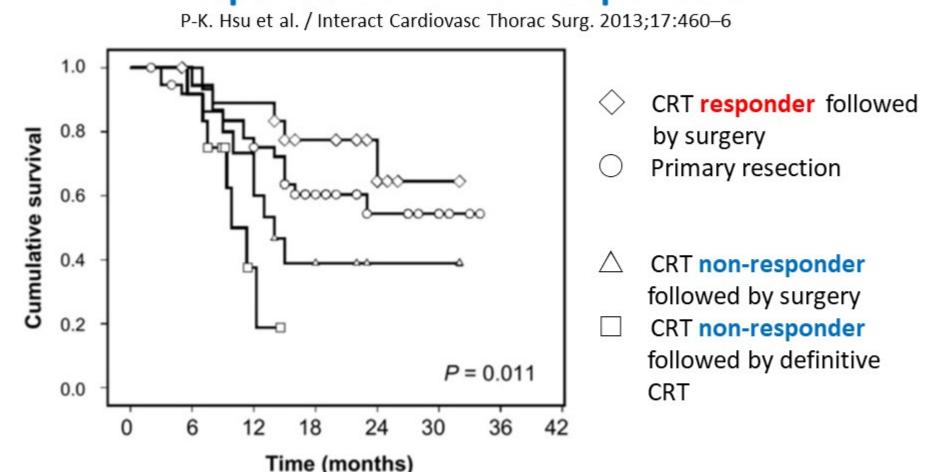

Division of Gastroenterology<sup>1</sup>, Metabolomics Research<sup>2</sup>, Kobe University Graduate School of Medicine, AMED-CREST<sup>3</sup>

Fujigaki S<sup>1</sup>, Nishiumi S<sup>1</sup>, Kobayashi T<sup>1</sup>, Yoshida M<sup>1,2,3.</sup>

#### **Esophageal Cancer**


Most Common Causes of Cancer Death Worldwide in 2012




#### **Esophageal Cancer**

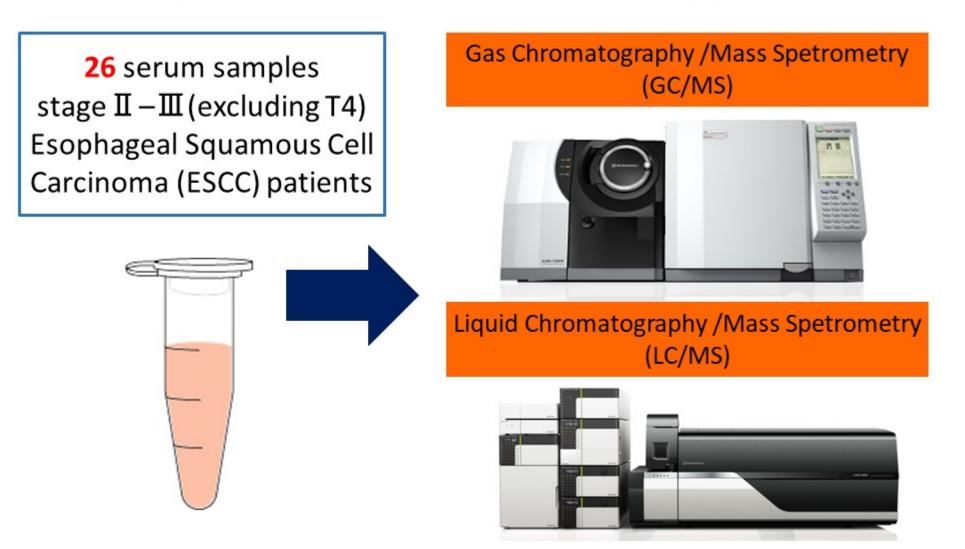
Sjoquist KM, Burmeister BH, Smithers BM et al. Lancet Oncol. 2011;12(7):681.

Pooled estimates for all-cause mortality for the trials that compared neoadjuvant chemoradiotherapy followed by surgery with surgery alone

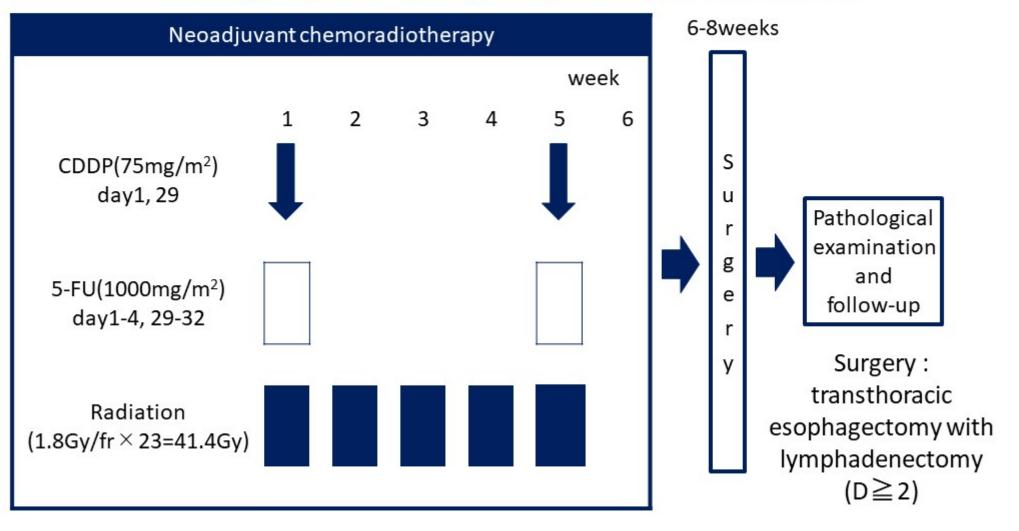


#### Comparison of Neoadjuvant Chemoradiotherapy Responders and Non-responders




#### Primary resection vs CRT non-responder, P = 0.036

#### Aim


To avoid unfavorable outcomes unnecessary adverse events, reliable methods for predicting the response of esophageal cancer to chemoradiotherapy are desired.

# Transcriptomics Gene-expression profiling Mitarion specific PCR MicroRNA-expression profiling DNA microarrays Multiplex PCR Multiplex PCR Multiplex PCR MicroRNA-expression profiling DNA microarrays Multiplex PCR MicroRNA-expression profiling DNA microarrays Multiplex PCR Proteomics Mass spectrometry Mass spectrometry Phosphoproteomic profiling Phosphoproteomic profiling Mass spectrometry Mass spectrometry


#### **Multiplatform Metabolomics Approach**



# Feasibility Study of Neoadjuvant Chemoradiotherapy with Cisplatin plus 5-fluorouracil and Elective Nodal Irradiation for Stage II / III Esophageal Squamous Cell Carcinoma



#### Pathological Examination (Histological Response)

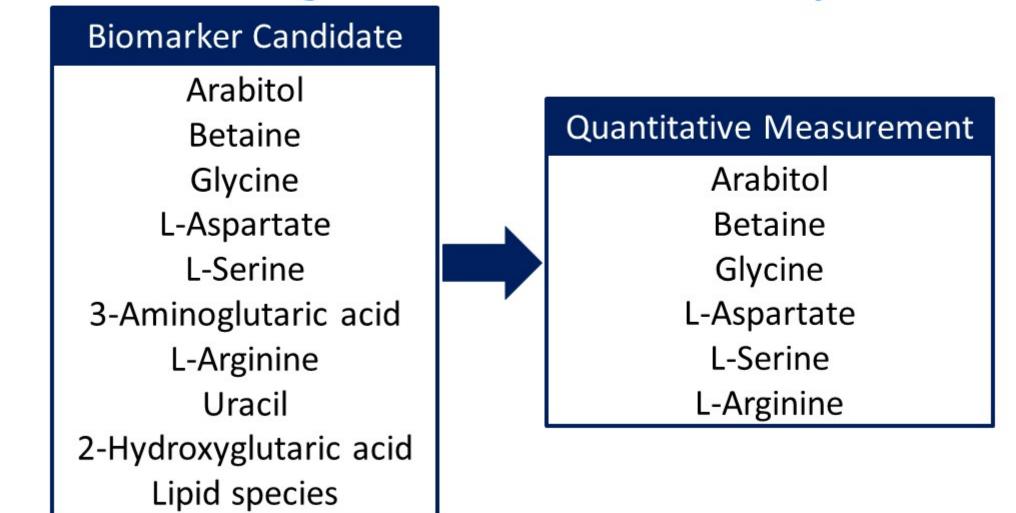


9<sup>th</sup> edition of the Japanese Classification of Esophageal Cancer

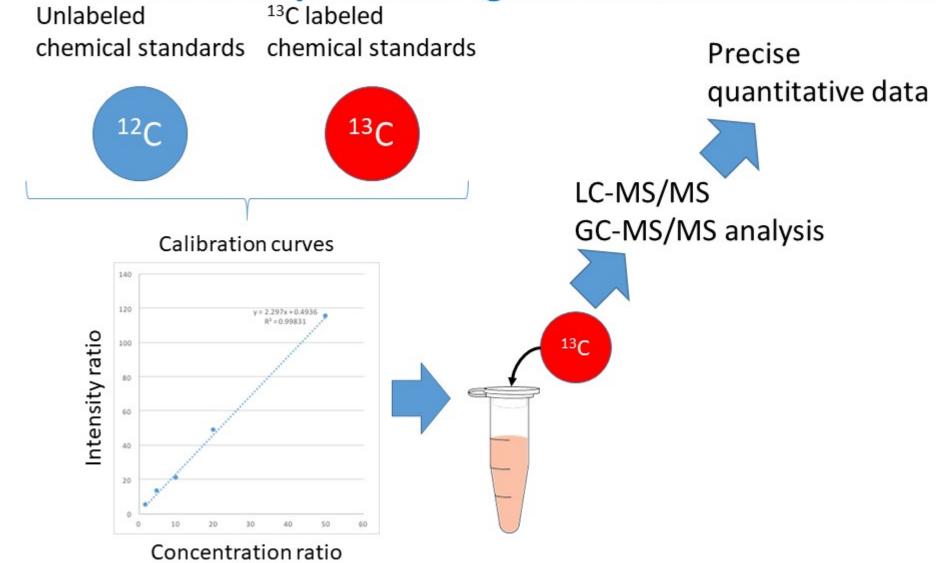
#### **Characteristics of the Subjects**

| Manialala      | Histological   | <i>p</i> -value |                         |  |
|----------------|----------------|-----------------|-------------------------|--|
| Variable       | Non-pCR (n=13) | pCR (n=13)      | (Fisher's exact t-test) |  |
| Age            |                |                 |                         |  |
| < 65 years     | 10             | 7               | 0.411                   |  |
| ≧65 years      | 3              | 6               |                         |  |
| Gender         |                |                 |                         |  |
| Male           | 10             | 13              | 0.22                    |  |
| Female         | 3              | 0               |                         |  |
| Tumor location |                |                 |                         |  |
| Lt             | 4              | 7               | 0.428                   |  |
| Mt             | 8              | 6               |                         |  |
| Ut             | 1              | 0               |                         |  |
| Clinical stage |                |                 |                         |  |
| ΠA             | 1              | 0               | 0.529                   |  |
| IIВ            | 2              | 5               |                         |  |
| ША             | 6              | 4               |                         |  |
| ШВ             | 4              | 4               |                         |  |

#### **Serum Metabolites Associated with the Chemoradiosensitivity**


| Metabolites            | Subclass          | Non-pCR (n=13) | pCR (n=13) | Fold    | n value         |
|------------------------|-------------------|----------------|------------|---------|-----------------|
|                        |                   | Mean           | Mean       | change* | <i>p</i> -value |
| Arabitol               | Sugar<br>alcohols | 0.047          | 0.011      | 0.230   | 0.0066          |
| 3-Aminoglutaric acid   | Amino acids       | 0.561          | 0.396      | 0.705   | 0.0313          |
| Uracil                 | Pyrimidines       | 0.0012         | 0.0009     | 0.726   | 0.0378          |
| Betaine                | Amino acids       | 1.645          | 1.135      | 0.690   | 0.0103          |
| Glycine                | Amino acids       | 1.231          | 0.99       | 0.804   | 0.0103          |
| L-Aspartate            | Amino acids       | 1.249 ati      | 0.958      | 0.767   | 0.021           |
| L-Serine               | Amino acids       | 4.43           | 3.509      | 0.792   | 0.024           |
| L-Arginine             | Amino acids       | 5.386          | 4.147      | 0.770   | 0.0313          |
| 2-Hydroxyglutaric acid | Organic<br>acids  | 0.023          | 0.016      | 0.726   | 0.0402          |

\* Ratio of pCR to non-pCR


## Serum Metabolites Associated with the Chemoradiosensitivity

|                | no Plot                               | Volca          |                 | Log <sub>2</sub> (Fold | pCR (n=13) | Non-pCR (n=13) | Metabolites                 |
|----------------|---------------------------------------|----------------|-----------------|------------------------|------------|----------------|-----------------------------|
|                | +                                     |                | <i>p</i> -value | change*)               | Mean       | Mean           | wetabolites                 |
| + AC           | ×.                                    |                |                 | *******                |            |                | (                           |
| ■ FA           | 2 -                                   |                | 0.0056          | -0.6251                | 0.1015     | 0.1566         | PE(18:1/20:4)               |
| ▲ LPC          | + +                                   |                |                 |                        |            |                | PE(18:2/20:4) PE(18:1/20:5) |
| × LPE          | J 01                                  |                | 0.0089          | -0.4904                | 0.5687     | 0.7989         | PE(16:0/22:6) PE(16:1/22:5) |
| - PC           | 22                                    | _              |                 |                        |            |                | PE(20:2/18:4)               |
| + PE           | +# +<br>- ^                           | alue           | 0.0159          | -0.5150                | 0.1497     | 0.2139         | PE(16:0/20:4)               |
|                | + +                                   | ^-d)0          | 0.0159          | -0.7230                | 0.0185     | 0.0305         | PE(18:1/20:3) PE(18:2/20:2) |
| -              | + + + 1 -                             | -log10(p-value | 0.0355          | -0.5569                | 0.1975     | 0.2906         | PE(16:1/18:1) PE(16:0/18:2) |
| +              | + ×<br>+<br>×<br>++                   |                | 0.0355          | -0.5938                | 0.1539     | 0.2323         | PE(16:0/18:1)               |
|                | ^*-<br>**                             |                | 0.0355          | -0.4090                | 0.4338     | 0.5760         | PE(18:0/20:4)               |
| - <u>-</u><br> | + × + = ×0.5 -                        |                | 0.0355          | -0.5435                | 0.0436     | 0.0635         | PE(18:1/22:6)               |
|                | * * * * * * * * * * * * * * * * * * * |                | 0.0402          | -0.4734                | 0.0371     | 0.0515         | LPC(19:0) (sn-2)            |
|                |                                       |                | 0.0402          | -0.6383                | 0.0472     | 0.0735         | PC(18:1/22:0)               |

#### **Targeted Metabolomics Analysis**



#### Stable Isotopic Labeling Assisted Metabolomics



#### **Quantitative Measurement**

| Metabolit | -      | R (n=13) pCR | (n=13)     | Fold  | n valva         |  |
|-----------|--------|--------------|------------|-------|-----------------|--|
|           | M20000 | n (μM) Mea   | an (μM) cl | hange | <i>p</i> -value |  |
| Arabitol  | 13.    | 298 3        | .723       | 0.28  | 0.0086          |  |
| Betaine   | 62.    | 015 45       | 5.902      | 0.74  | 0.0613          |  |
| Glycine   | 360    | .556 27      | 0.941      | 0.75  | 0.0345          |  |
| L-Asparta | te 42. | 571 34       | 1.047      | 0.8   | 0.0734          |  |
| L-Serine  | 133    | .991 96      | 5.960      | 0.72  | 0.0106          |  |
| L-Arginin | e 139  | .611 10      | 8.265      | 0.78  | 0.0373          |  |

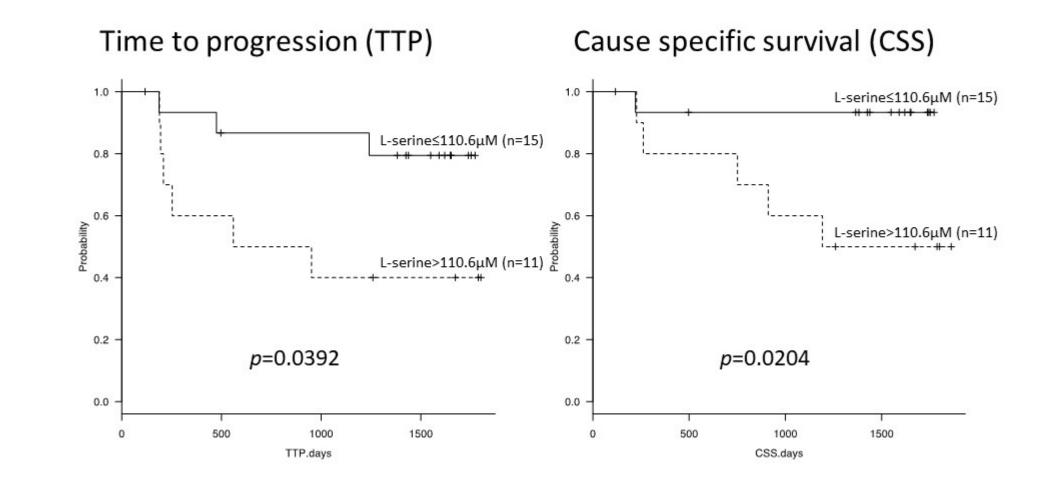
#### **Prediction Accuracy of pCR**

|          | Metabolites | AUC<br>(95% CI)        | Sensitivity<br>(%) | Specificity<br>(%) | Cut-off value<br>(μM) |
|----------|-------------|------------------------|--------------------|--------------------|-----------------------|
|          | Arabitol    | 0.799<br>(0.616-0.981) | 100                | 61.5               | 5.384                 |
|          | Betaine     | 0.675<br>(0.437-0.912) | 92.3               | 61.5               | 55.364                |
|          | Glycine     | 0.722<br>(0.517-0.927) | 84.6               | 61.5               | 336.315               |
|          | L-Aspartate | 0.692<br>(0.48-0.905)  | 84.6               | 61.5               | 39.582                |
|          | L-Serine    | 0.781<br>(0.57-0.992)  | 92.3               | 76.9               | 110.601               |
| <u> </u> | L-Arginine  | 0.71<br>(0.504-0.917)  | 92.3               | 46.2               | 138.768               |

### Association of High Serum L-Serine with Shorter Time to Progression (TTP) Cox regression model analysis of prognostic significance

Univariate analysis Variable HR 95% CI p-value ≥65 years/<65 years 0.096-2.24 0.339 0.46 Clinical stage **I**II A and **I**II B / **I**I A and **I**I B 5.33 0.97-99.3 0.0551 Serum Arabitol >5.384 μM/≤5.384 μM 3.08 0.097 0.81 - 12.5Serum Glycine >336.3 μM/≤336.3 μM 2.34 0.62 - 9.520.2056 Serum L-Serine >110.6 μM/≤110.6 μM 3.91 0.0463 1.02-18.7

# Serum L-Serine was Significantly Correlated with Long-term Prognosis (Time to Progression and Cause Specific Survival)


2.77

0.68 - 10.5

0.1463

Serum L-Arginine

>138.8 μM/≤138.8 μM



#### Conclusion

- In the comprehensive metabolomics analysis, it was confirmed that the serum metabolite profiles of the pCR group were different from those of the non-pCR group.
- The pCR group exhibited significantly lower serum concentrations of serine, glycine, arginine, and arabitol than the non-pCR group.
- The serum concentration of serine could be used to predict the prognosis of ESCC patients who received neoadjuvant chemoradiotherapy.