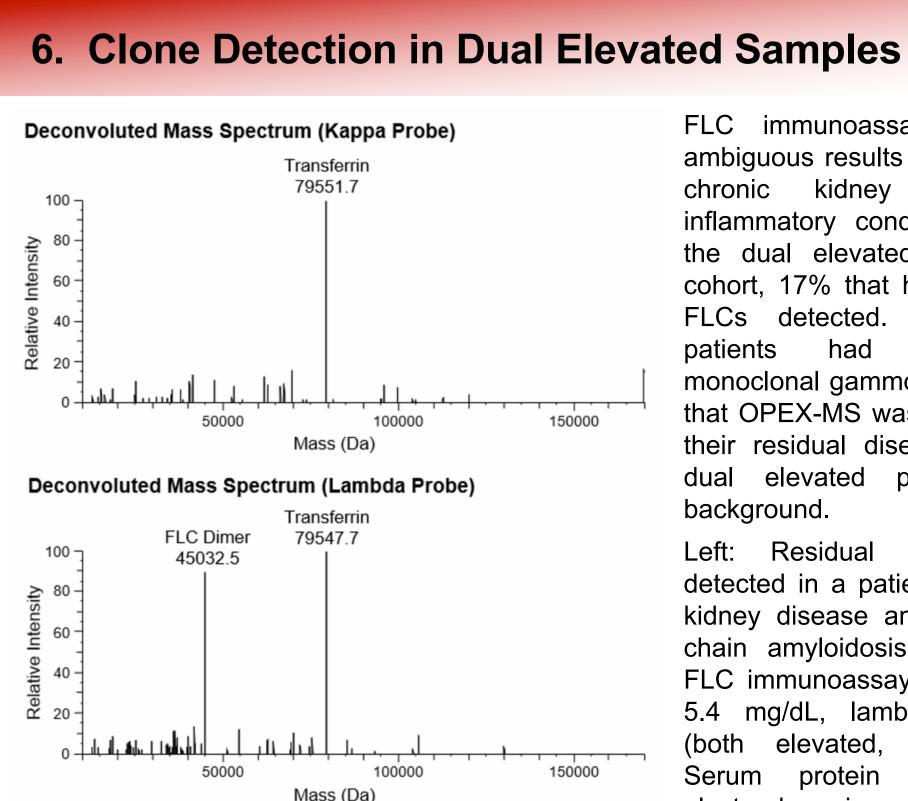

Priscilla S.-W. Yeung^{1,2}, Yajing Liu¹, Ashley Ruan¹, Christina Kerr¹, Run-Zhang Shi^{1,2}, David J. Iberri³, Ruben Y. Luo^{1,2}

¹Department of Pathology, Stanford University, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, Stanford, CA, USA; ³Department of Medicine, Division of Hematology, St

Detection of Patient Monoclonal Serum Free Light Chains by On-Probe Extraction coupled with High-Resolution Mass Spectrometry (OPEX-MS)



5. Comparison with FLC Immunoassay

Four cohorts of samples from unique patients were tested based on Binding Site FreeLite FLC immunoassay results according to the manufacturer's reference ranges: negative (n = 50), kappa elevated (n = 49), lambda elevated (n = 45), and dual elevated with normal ratio (n = 100). Among the 50 samples in the immunoassay negative cohort, OPEX-MS identified 2 kappa positive and 5 lambda positive samples, all of which were from patients with a previous history of monoclonal gammopathy, suggesting a potentially improved sensitivity in residual clones in treated patients. In the kappa elevated cohort, 16 out of 49 (33%) were negative by the OPEX-MS method. For these 16 discrepant samples, the average kappa/lambda ratio was 2.8, indicating that these were mostly borderline kappa elevated samples with unclear underlying clonality. There was good overall concordance between the immunoassay and OPEX-MS methods for the lambda elevated samples.

		FLC Immunoassay			
		Negative	Kappa Elevated	Lambda Elevated	Dual Elevated
OPEX-MS	Negative	43	16	1	83
	Kappa Positive	2	32	0	0
	Lambda Positive	5	1	44*	16
	Both Positive	0	0	0	1
	Total	50	49	45	100
*This included five high lambda FLC (>100 mg/dL) samples that displayed <20% crossover binding to the kappa probe					

7. Summary

- On-probe extraction coupled with high-resolution mass spectrometry (OPEX-MS) can be used as a complementary method to FLC immunoassay to directly detect monoclonal sFLCs in patient samples.
- Monoclonal sFLCs can be identified by their deconvoluted masses and retention times.
- In line with previous studies, light chain glycosylation was detected in 7.7% of positive samples at high resolution, which allows for the detailed study of glycosylation patterns.
- Residual clones can be identified in dual elevated samples with normal kappa/lambda ratios, demonstrating the value of OPEX-MS in elucidating FLC immunoassay results.
- By using different capture antibodies, the OPEX-MS workflow can be applied to other clinical protein biomarkers.

Stanford University

FLC immunoassays can yield ambiguous results in patients with chronic kidney disease or inflammatory conditions [3-4]. In the dual elevated, normal ratio cohort, 17% that had monoclonal FLCs detected. All of these histories of had monoclonal gammopathy, implying that OPEX-MS was able to detect their residual disease within the dual elevated polyclonal FLC

Residual lambda clone detected in a patient with chronic kidney disease and lambda light chain amyloidosis on treatment. FLC immunoassay results: kappa mg/dL, lambda 7.3 mg/dL elevated, normal ratio). protein immunofixation electrophoresis result: negative.