Troubleshooting the Transformation of Arsenic Species in Urine by ICP-MS

Kathryn A. Smith¹, Megan Hirschi Adamson¹, Kamisha L. Johnson-Davis^{1,2}

¹ARUP Laboratories, Salt Lake City, UT ²Department of Pathology, University of Utah, Salt Lake City, UT

Problem

- While preparing a set of four calibrators for six arsenic species in blank human pooled urine, one of the arsenic species (arsenobetaine, AsB) had poor recoveries (0~30%) in calibrators 1-2 along with the presence of an unexpected arsenic peak
- Another arsenic species (arsenocholine,

Certain bacteria found in pooled

Troubleshooting Steps

- Spike AsB and AsC into 4 additional blank urine pool lots (Lot#4 was the same lot used in the original calibration preparation)
- Two of the four lots showed As degradation after left on benchtop for 12h
- Literature search revealed microorganisms are capable of AsB biotransformation*

AsC) had lower than expected recoveries in calibrator 1-2 (~72%)

- Only calibrator 4 had acceptable recoveries (within 10% of target) for AsB and AsC
- The remaining arsenic species included dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), AsV and AsIII and had an average recovery of 93 ± 3% to target across the four calibrators

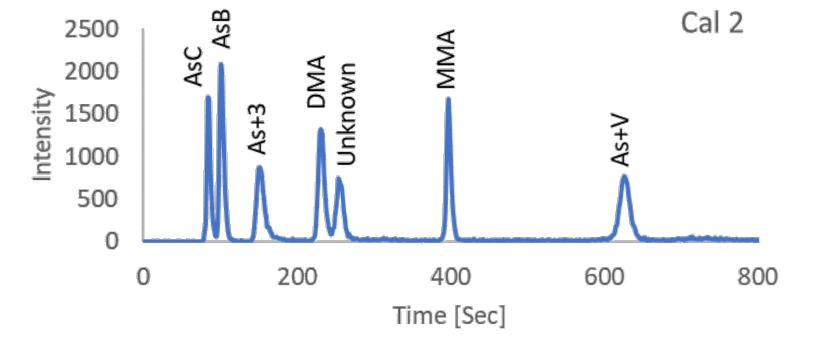


Figure 1. Chromatogram of calibration level 2 containing 15 µg/L each of AsC, As+3, DMA, MMA, and As+V. AsB concentration should be at 50µg/L but shows much lower recovery along with an unidentified peak eluting slightly after DMA.

	Target [µg/L]		%Recovery					
Cal	AsB	All other analytes	AsC	AsB	AsIII	DMA	MMA	AsV
1	5	5	72%	-4%	92%	96%	98%	87%
2	50	15	73%	29%	92%	94%	95%	94%
3	150	50	79%	87%	90%	91%	92%	93%
4	450	150	90%	93%	93%	92%	95%	97%

urine were capable of degrading and

transforming organic arsenic

species.

Time [Sec]		Time [Sec]	WQ 00 300 0	Time [Se	ec]	Lot #4	200 300 [Sec]	
Figure 2. Chrom	ne was)F	
	No Grow	th		Pseud fluore	lomonas scens		Mixed culture	

Isolated and inoculated bacteria into sterile urine spiked with AsB and AsC

Urine samples were left on benchtop and tested by ICP-MS at 12h (and 2weeks for mixed isolates)

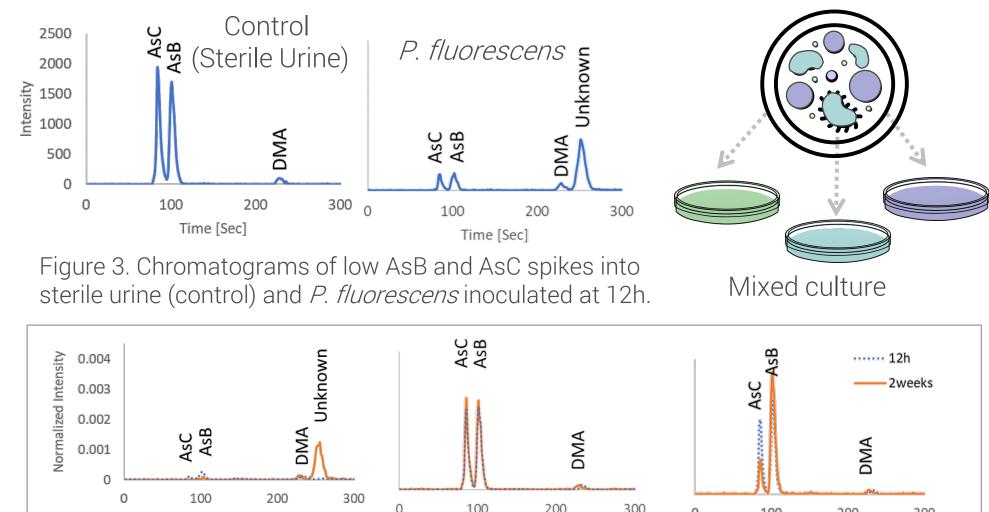


Table 1. Arsenic species in calibrators prepared with blank pooled human urine.

Method Information

- 50µL urine diluted with 950µL diluent + internal
 - standard (Sb) solution
- Agilent 1260 Infinity II LC
- Agilent 7700 ICP-MS
- PRP-X100 Anion Exchange HPLC column (150x4.6mm), with KrudKatcher Classic HPLC in-Line filter
- MPA 20mM Ammonium Carbonate + 3% Methanol, pH 8.7
- MPB 50mM Ammonium Carbonate + 3% Methanol, pH 8.0
- 12min analytical step gradient, Flow 1mL/min
- Column oven 20°C

		lime [sec]
Achromobacter spp.	Proteus Vulgaris	Serratia spp.

Figure 4. Chromatograms of low AsB and AsC spikes into sterile urine inoculated with the isolates from the mixed culture urine at 12h and 2week time points.

%Recovery 12h (2weeks)						
	AsC [µg/L]	%Rec	AsB [µg/L]	%Rec		
Target	5.0		5.0			
P. fluorescens						
Control	5.3	106%	5.2	104%		
P. Fluorescens	0.9	18%	1.0	20%		
Mixed Culture Isolates						
Control	4.6 (4.6)	92 (92)%	5.2 (5.7)	104 (114)%		
Serratia spp.	4.1 (1.7)	82 (34)%	5.8 (8.2)	116 (164)%		
Proteus Vulgaris	4.4 (4.5)	88 (90)%	4.9 (5.5)	98 (110)%		
Achromobacter spp.	0.2 (0.0)	4 (0)%	0.6 (0.0)	12 (0)%		
Table 2. Arsenic species concentrations in inoculated human urine at various time points						

Outcome

The calibrators were prepared in freshly prepared synthetic urine instead of human pooled urine to avoid preparing calibrators in urine contaminated with bacteria

* Harrington, C.F., Brima E.I., & Jenkins, R.O. (2008). Biotransformation of arsenobetaine by microorganisms from the human gastrointestinal tract. Chemical Speciation & Bioavailability, 20:3, 173-180.

